Translation and Rotation of Coordinate Axes

Consider two sets of rectangular Cartesian frames of reference $ O - x_1x_2$ and $ O^\prime - x^\prime_1x^\prime_2$ in a plane. If the frame of reference $ O^\prime - x^\prime_1x^\prime_2$ is obtained from $ O - x_1x_2$ by a shift of the origin without a change in orientation, then, the transformation is a translation.

\includegraphics{continuumfig2.2.eps}

If a point $ P$ has coordinates $ (x_1,x_2)$ and $ (x^\prime_1,x^\prime_2)$ with respect to $ O - x_1x_2$ and $ O^\prime - x^\prime_1x^\prime_2$ respectively and $ (C_1,C_2)$ are the coordinates of $ 0^\prime$ with respect to $ O - x_1x_2$, then

  $\displaystyle x_1 = x^\prime_1 + C_1,$    
  $\displaystyle x_2 = x^\prime_2 + C_2,$    

or briefly

$\displaystyle x_i = x^\prime_i + C_i,\ i = 1,2.$ (2.7.1)

If the origin remains fixed, and the new axes $ Ox^\prime_1,\ Ox^\prime_2$ are obtained by rotating $ Ox_1$ and $ Ox_2$ through an angle $ \theta$ in the counter-clockwise direction, then

\includegraphics{continuumfig2.3.eps}

the transformation of axes is a rotation. Let the point $ P$ have coordinates $ (x_1,x_2)$ and $ (x^\prime_1,x^\prime_2)$ relative to $ O - x_1x_2$ and $ O - x^\prime_1x^\prime_2$ respectively. Then,

$\displaystyle x_1 =\ $ $\displaystyle OA = OB - CD,$    
$\displaystyle =\ $ $\displaystyle OD \cos \theta - PD\sin\theta ,$    
$\displaystyle =\ $ $\displaystyle x^\prime_1\cos \theta - x^\prime_2\sin\theta;$    
$\displaystyle x_2 =\ $ $\displaystyle AP = BD + CP,$    
$\displaystyle =\ $ $\displaystyle x^\prime_1 \sin\theta + x^\prime_2 \cos\theta .$    

We can write $ (x^\prime_1,x^\prime_2)$ in terms of $ (x_1,x_2)$ as

\begin{displaymath}\begin{split}&x^\prime_1 = x_1\cos\theta + x_2\sin\theta,\\ &x^\prime_2 = - x_1 \sin\theta + x_2\cos\theta. \end{split}\end{displaymath} (2.7.2)

Using the index notation, the set of eqns. (2.7.2) can be written as

$\displaystyle x^\prime_i = a_{ij}x_j,\hspace{.5in} i =1,2; \ j = 1,2,$ (2.7.3)

where $ a_{ij}$ are elements of the matrix $ [a_{ij}]$;

$\displaystyle \left[\begin{array}{cc} a_{11} & a_{12}\\  a_{21} & a_{22}\end{ar...
...ray}{cc} \cos\theta & \sin\theta\\  -\sin\theta & \cos\theta\end{array}\right].$    

Before we generalize (2.7.1) and (2.7.2) to three dimensions we give below an alternate method of arriving at (2.7.2). Let $ \mathbf{e}^\prime_1,\ \mathbf{e}^\prime_2$ denote unit vectors along $ x^\prime_1$ and $ x^\prime_2$-axes and $ \mathbf{e}_1,\ \mathbf{e}_2$ unit vectors along $ x_1$ and $ x_2$-axes. Then

$\displaystyle \overrightarrow{OP} =\ $ $\displaystyle x_1\mathbf{e}_1 + x_2 \mathbf{e}_2,$    
$\displaystyle =\ $ $\displaystyle x^\prime_1 \mathbf{e}^\prime_1 + x^\prime_2 \mathbf{e}^\prime_2.$    

Also

  $\displaystyle \mathbf{e}^\prime_1 = \cos\theta\ \mathbf{e}_1 + \sin\theta\ \mathbf{e}_2,$    
  $\displaystyle \mathbf{e}^\prime_2 = -\sin\theta\ \mathbf{e}_1 + \cos\theta \ \mathbf{e}_2.$    

Therefore,

$\displaystyle x^\prime_1 =\ $ $\displaystyle \overrightarrow{OP} \cdot \mathbf{e}^\prime_1,$    
$\displaystyle =\ $ $\displaystyle (x_1\mathbf{e}_1 + x_2\mathbf{e}_2)\cdot (\cos\theta \mathbf{e}_1 + \sin\theta\mathbf{e}_2)$    
$\displaystyle =\ $ $\displaystyle x_1 \cos \theta + x_2 \sin\theta ;$    
$\displaystyle x^\prime_2 =\ $ $\displaystyle \overrightarrow{OP}\cdot \mathbf{e}^\prime_2,$    
$\displaystyle =\ $ $\displaystyle -x_1 \sin\theta + x_2 \cos\theta.$    

This latter approach can more easily be adopted to the 3-dimensional case. If the primed axes $ O - x^\prime_1x^\prime_2x^\prime_3$ are obtained from the unprimed axes $ O-x_1x_2x_3$ just by a translation, then the coordinates of a point with respect to the two sets of axes are related by (2.7.1) wherein the index $ i$ ranges from $ 1$ to $ 3$. Now let us assume that the primed axes are obtained from the unprimed axes by a rotation only. Let us denote unit vectors along $ x_1,x_2,x_3$ by $ \mathbf{e}_1,\ \mathbf{e}_2$, and $ \mathbf{e}_3$ respectively and those along $ x^\prime_1,\ x^\prime_2,\ x^\prime_3$ by $ \mathbf{e}^\prime_1,\ \mathbf{e}^\prime_2$ and $ \mathbf{e}^\prime_3$ respectively. If

$\displaystyle a_{1j} =$   cosine of the angle between$\displaystyle \ \mathbf{e}^\prime_1\ $   and$\displaystyle \ \mathbf{e}_j,$    

then $ a_{11},\ a_{12}$ and $ a_{13}$ are the direction cosines of $ \mathbf{e}^\prime_1$ with respect to the unprimed axes. We can write

$\displaystyle \mathbf{e}^\prime_1=\ $ $\displaystyle a_{11}\mathbf{e}_1+a_{12}\mathbf{e}_2+a_{13} \mathbf{e}_3 ,$    
$\displaystyle =\ $ $\displaystyle a_{1i}\mathbf{e}_i.$    

Similarly,

$\displaystyle \mathbf{e}^\prime_2 = a_{2i}\mathbf{e}_i,\ \mathbf{e}^\prime_3 = a_{3i} \mathbf{e}_i.$    

Or

$\displaystyle \mathbf{e}^\prime_i = a_{ij}\mathbf{e}_j.$ (2.7.4)

Note that the matrix $ a_{ij}$ is $ 3\times 3$. Since

$\displaystyle \mathbf{e}^\prime_i \cdot \mathbf{e}^\prime_j = \delta_{ij},$ (2.7.5)

therefore,

$\displaystyle \delta_{ij} =\ $ $\displaystyle a_{ik}\mathbf{e}_k\cdot a_{jp}\mathbf{e}_p = a_{ik}a_{jp}\mathbf{e}_k\cdot \mathbf{e}_p,$    
$\displaystyle =\ $ $\displaystyle a_{ik}a_{jp}\delta_{kp} = a_{ik}a_{jk}.$ (2.7.6)

Equations (2.7.6) are equivalent to the following six equations.

\begin{displaymath}\begin{split}&a^2_{11} + a^2_{12} + a^2_{13} = 1,\\ &a^2_{21}...
...&a_{31} a_{11} + a_{32} a_{12} + a_{33} a_{13} = 0. \end{split}\end{displaymath} (2.7.7)

The first three equations are equivalent to the statement that $ \mathbf{e}^\prime_1,\ \mathbf{e}^\prime_2$ and $ \mathbf{e}^\prime_3$ are unit vectors; the last three equations are equivalent to the statement that $ \mathbf{e}^\prime_1,\
\mathbf{e}^\prime_2,\ \mathbf{e}^\prime_3$ are mutually orthogonal. Of course, we can write $ \mathbf{e}_i$'s in terms of $ \mathbf{e}^\prime_i$'s. Since

$\displaystyle a_{j1} =$   cosine of the angle between$\displaystyle \ \mathbf{e}_1\ $   and$\displaystyle \ \mathbf{e}^\prime_j,$    

therefore,

$\displaystyle \mathbf{e}_1 = a_{j1}\mathbf{e}^\prime_j\ $   or$\displaystyle \ \mathbf{e}_i = a_{ji}\mathbf{e}^\prime_j.$ (2.7.8)

From the point of view of the solution of a set of simultaneous linear equations, the matrix $ a_{ji}$ in (2.7.8) must be identified as the inverse of the matrix $ a_{ij}$:

$\displaystyle [a_{ij}]^{-1} = [a_{ji}] = [a_{ij}]^T.$ (2.7.9)

Here $ [a_{ij}]^T$ is the transpose of the matrix $ [a_{ij}]$. A matrix $ [a_{ij}]$, which satisfies eqn. (2.7.9) is called an orthogonal matrix. That is, the transpose of an orthogonal matrix equals its inverse. A transformation is said to be orthogonal if the associated matrix is orthogonal. The matrix $ [a_{ij}]$ in (2.7.4) defining a rotation of coordinate axes is orthogonal.

For an orthogonal matrix we have

$\displaystyle [\mathbf{a}][\mathbf{a}]^T = \mathbf{1}.$    

Therefore

  $\displaystyle {\rm det}([\mathbf{a}][\mathbf{a}]^T) = 1,$    
or$\displaystyle \ \ $ $\displaystyle {\rm det}[\mathbf{a}]\, {\rm det}[\mathbf{a}]^T = 1,$    
or$\displaystyle \ \ $ $\displaystyle {\rm det}[\mathbf{a}]\, {\rm det}[\mathbf{a}] = 1,$    

and thus

$\displaystyle {\rm det}[\mathbf{a}] = \pm 1.$    

An orthogonal matrix whose determinant equals $ +1$ is called proper orthogonal and the one whose determinant equals $ -1$ is called improper orthogonal. A proper orthogonal matrix transforms a right-handed triad of axes into a right-handed set of axes whereas an improper orthogonal matrix transforms a right-handed set of axes into a left-handed set of axes or vice-versa.

Exercise: Consider a cube formed by the orthonormal vectors $ \mathbf{e}^\prime_1,\ \mathbf{e}^\prime_2$ and $ \mathbf{e}^\prime_3$. By setting the volume of this cube equal to 1, show that $ {\rm det}[a_{ij}] = 1$.

Consider a vector $ \mathbf{O}\mathbf{P}$ emanating from the origin $ O$ and ending at a point $ P$. With respect to the primed and unprimed axes,

$\displaystyle \mathbf{O}\mathbf{P} =\ $ $\displaystyle x^\prime_1\mathbf{e}^\prime_1 + x^\prime_2\mathbf{e}^\prime_2 + x^\prime_3\mathbf{e}^\prime_3,$    
$\displaystyle =\ $ $\displaystyle x^\prime_j\mathbf{e}^\prime_j,$    
$\displaystyle =\ $ $\displaystyle x_j\mathbf{e}_j.$    

Similarly,

$\displaystyle x^\prime_i =\ $ $\displaystyle \mathbf{O}\mathbf{P} \cdot \mathbf{e}^\prime_i,$    
$\displaystyle =\ $ $\displaystyle (x_j\mathbf{e}_j)\cdot (a_{ik}\mathbf{e}_k),$    
$\displaystyle =\ $ $\displaystyle x_ja_{ik}\delta_{jk},$    
$\displaystyle =\ $ $\displaystyle a_{ij}x_j.$    

Example: The components of a vector $ \mathbf{A}$ with respect to unprimed axes are $ A_i = (0,1,1)$. Consider a set of primed coordinate axes obtained by rotating the unprimed axes through an angle of $ 30^\circ$ about the $ x_3$-axis (see Fig. ). What are the components, $ A^\prime_i$, of this vector with respect to the primed set of axes?

\includegraphics{continuumfig2.4.eps}

Solution:

$\displaystyle \mathbf{e}^\prime_3 = \mathbf{e}_3;\ \mathbf{e}^\prime_1 =\ $ $\displaystyle \cos 30 \mathbf{e}_1 + \sin 30\mathbf{e}_2,$    
$\displaystyle \mathbf{e}^\prime_2 =\ $ $\displaystyle -\sin 30\mathbf{e}_1 + \cos 30\mathbf{e}_2.$    

Therefore

$\displaystyle [a_{ij}] = [\mathbf{e}^\prime_i\cdot \mathbf{e}_j] = \left[\begin...
...}\cos 30 & \sin 30 & 0\\  -\sin 30 & \cos 30 & 0\\  0 & 0 & 1\end{array}\right]$    

Now

$\displaystyle A^\prime_i = a_{ij}A_j$    

can be written as

$\displaystyle \left[\begin{array}{c}A^\prime_1\\  A^\prime_2\\  A^\prime_3\end{...
...ray}\right] = \left[\begin{array}{c}\sin 30\\  \cos 30\\  1\end{array}\right] .$    

Hence

$\displaystyle A^\prime_i = (0.5,\ \ 0.866,\ \ 1).$    

Summarizing our discussion of the transformation of coordinate axes, we note that a general transformation from unprimed to primed axes combines both a translation and a rotation of the axes. This can be written as

$\displaystyle x^\prime_i = a_{ij}x_j + c_i$ (2.7.10)

where $ a_{ij}$ is an orthogonal matrix and $ c_i$ is a constant. Under this transformation, the components of a vector $ \mathbf{A}$ in the two sets of axes are related as

$\displaystyle A^\prime_i = a_{ij}A_j.$ (2.7.11)