Manipulations with the Indicial Notations

(a) Substitution
If

$\displaystyle a_i = v_{im}b_m$ (2.6.1)

and

$\displaystyle b_i = v_{im}c_m,$ (2.6.2)

then, in order to substitute for $ b_i$'s from (2.6.2) into (2.6.1) we first change the dummy index from $ m$ to some other letter, say $ n$ and then the free index in (2.6.2) from $ i$ to $ m$, so that

$\displaystyle b_m = v_{mn}c_n.$ (2.6.3)

Now (2.6.1) and (2.6.3) give

$\displaystyle a_i = v_{im}v_{mn}c_n.$ (2.6.4)

Note that (2.6.4) represents three equations each having the sum of nine terms on its right-hand side.

(b) Multiplication

$\displaystyle \noalign{\mbox{If}}$ $\displaystyle p = a_mb_m$ (2.6.5)
$\displaystyle \noalign{\mbox{and}}$ $\displaystyle q = c_md_m$ (2.6.6)
$\displaystyle \noalign{\mbox{then}}$ $\displaystyle pq = a_mb_mc_nd_n.$ (2.6.7)

It is important to note that $ pq\ne a_mb_mc_md_m$. In fact the right-hand side of this expression is not even defined in the summation convention and further it is obvious that

$\displaystyle pq\ne \sum^3_{m=1} a_mb_mc_md_m.$    

(c) Factoring
If

$\displaystyle T_{ij}n_j - \lambda n_i = 0,$ (2.6.8)

then, using the Kronecker delta, we can write

$\displaystyle n_i = \delta_{ij}n_j,$ (2.6.9)

so that (2.6.8) becomes

$\displaystyle T_{ij}n_j - \lambda \delta_{ij}n_j = 0.$    

Thus

$\displaystyle (T_{ij} - \lambda\delta_{ij})n_j = 0.$    

(d) Contraction

The operation of identifying two indices and so summing on them is known as contraction. For example, $ T_{ii}$ is the contraction of $ T_{ij}$,

$\displaystyle T_{ii} = T_{11} + T_{22} + T_{33},$    

and $ T_{ijj}$ is a contraction of $ T_{ijk}$,

$\displaystyle T_{ijj} = T_{i11}+ T_{i22} + T_{i33}.$    

If

$\displaystyle T_{ij} = \lambda E_{kk}\delta_{ij} + 2\mu E_{ij},$    

then

$\displaystyle T_{ii} =\ $ $\displaystyle \lambda E_{kk}\delta_{ii} + 2\mu E_{ii},$    
$\displaystyle =\ $ $\displaystyle (3\lambda + 2\mu )E_{kk}.$    

Exercise. Given that $ T_{ij} = \lambda E_{kk}\delta_{ij}
+ 2\mu E_{ij}$, $ W = {\scriptstyle \frac{1}{2}} T_{ij}E_{ij},\
P = T_{ij}T_{ij}$, show that

$\displaystyle W =\ $ $\displaystyle \mu E_{ij}E_{ij} + \frac{\lambda}{2}(E_{kk})^2,$    
$\displaystyle P =\ $ $\displaystyle 4\mu^2E_{ij}E_{ij} + (E_{kk})^2(4\mu\lambda + 3\lambda^2).$