Permutation Symbol

The permutation symbol, denoted by $ \epsilon_{ijk}$, is defined by

$\displaystyle \epsilon_{ijk} = \left\{\begin{array}{r} 1\\  -1\\  0\end{array}\right\}\ $   if$\displaystyle \ i,j,k\ $   form$\displaystyle \ \left\{\begin{array}{l} \mbox{an even}\\  \mbox{an odd}\\  \mbo...
...\end{array}\right\} \begin{array}{l} \mbox{permutation of}\\  1,2,3.\end{array}$ (2.5.1)

That is,

  $\displaystyle \epsilon_{123} = \epsilon_{231} = \epsilon_{312} = 1,$    
  $\displaystyle \epsilon_{132} = \epsilon_{321} = \epsilon_{213} = -1,$    
  $\displaystyle \epsilon_{111} = \epsilon_{211} = \epsilon_{133} = \ldots = 0.$    

We note that

$\displaystyle \epsilon_{ijk} = \epsilon_{jki} = \epsilon_{kij} = -\epsilon_{jik} = - \epsilon_{ikj} = - \epsilon_{kji}.$    

If $ \mathbf{e}_1,\ \mathbf{e}_2,\
\mathbf{e}_3$ form a right-handed triad, then

$\displaystyle \mathbf{e}_1\times \mathbf{e}_2 = \mathbf{e}_3,\ \mathbf{e}_2\times \mathbf{e}_3 = \mathbf{e}_1,\ etc.$    

which can be written as

$\displaystyle \mathbf{e}_i\times \mathbf{e}_j = \epsilon_{ijk}\mathbf{e}_k.$ (2.5.2)

Now, if $ \mathbf{u} = u_i\mathbf{e}_i,\ \mathbf{v} = v_i\mathbf{e}_i$, then

$\displaystyle \mathbf{u}\times \mathbf{v} =\ $ $\displaystyle u_i\mathbf{e}_i \times v_j\mathbf{e}_j = u_iv_j\mathbf{e}_i\times \mathbf{e}_j$    
$\displaystyle =\ $ $\displaystyle u_iv_j\epsilon_{ijk}\mathbf{e}_k = \epsilon_{ijk}u_iv_j\mathbf{e}_k.$ (2.5.3)

Exercise. Using the index notation write an expression for $ \vert\sin\theta \vert$; $ \theta$ being the angle between vectors $ \mathbf{u}$ and $ \mathbf{v}$.

Exercise. Show that

  $\displaystyle (1)\ \ \epsilon_{ijk}\epsilon_{jki} = 6,$    
  $\displaystyle (2)\ \ \epsilon_{ijk}A_jA_k = 0.$    

The following useful identity, which can be verified by long-hand calculations should be memorized.

$\displaystyle \epsilon_{ijm}\epsilon_{klm} = \delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}.$ (2.5.4)

Now by using this identity let us prove the vector identity

$\displaystyle \mathbf{u}\times (\mathbf{v}\times \mathbf{w}) = (\mathbf{u}\cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}.$    

Proof: Let $ \mathbf{v}\times \mathbf{w} = \mathbf{a}$. Then $ \mathbf{a} = \epsilon_{ijk}v_iw_j\mathbf{e}_k$, and

  $\displaystyle \mathbf{u}\times \mathbf{a} = \epsilon_{ijk}u_ia_j\mathbf{e}_k,$    
  $\displaystyle a_j = \mathbf{a}\cdot \mathbf{e}_j = \epsilon_{ilm}v_iw_l\mathbf{e}_m\cdot \mathbf{e}_j,$    
  $\displaystyle \hspace*{.7in} =\epsilon_{ilm}v_iw_l\delta_{mj} = \epsilon_{ilj}v_iw_l.$    

$\displaystyle \mathbf{u}\times (\mathbf{v} \times \mathbf{w})=\ $ $\displaystyle \epsilon_{ijk}u_i (\epsilon_{plj}v_pw_l)\mathbf{e}_k,$    
$\displaystyle =\ $ $\displaystyle \epsilon_{ijk}\epsilon_{plj}u_iv_pw_l\mathbf{e}_k,$    
$\displaystyle =\ $ $\displaystyle \epsilon_{kij}\epsilon_{plj}u_iv_pw_l\mathbf{e}_k,$    
$\displaystyle ($use$\displaystyle \ (2.5.4)) =\ $ $\displaystyle (\delta_{kp}\delta_{il} - \delta_{kl} \delta_{ip})u_iv_pw_l\mathbf{e}_k,$    
$\displaystyle =\ $ $\displaystyle \delta_{kp}\delta_{il} u_iv_pw_l\mathbf{e}_k - \delta_{kl}\delta_{ip}u_iv_pw_l\mathbf{e}_k,$    
$\displaystyle =\ $ $\displaystyle u_lw_lv_k\mathbf{e}_k - u_pv_pw_k\mathbf{e}_k,$    
$\displaystyle ($use$\displaystyle \ (2.4.2)) =\ $ $\displaystyle (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u}\cdot \mathbf{v})\mathbf{w}.$    

Exercise. Show that
(a)
If $ \epsilon_{ijk}T_{jk} = 0$, then $ T_{ij} = T_{ji}$,
(b)
$ \epsilon_{ilm}\epsilon_{jlm} = 2\delta_{ij}$, and
(c)
if $ T_{ij} = -T_{ji}$, then $ T_{ij}a_ia_j = 0$.
We now write $ {\rm det}\, A_{ij}$ in the index notation.

$\displaystyle {\rm det}\, [A_{ij}] =\ $ $\displaystyle {\rm det}\, \left[\begin{array}{ccc} A_{11} & A_{12} & A_{13}\\ A_{21} & A_{22} & A_{23}\\ A_{31} & A_{32} & A_{33}\end{array}\right],$    
$\displaystyle =\ $ $\displaystyle A_{11} (A_{22}A_{33} - A_{32} A_{23}) - A_{21} (A_{12}A_{33} - A_{32}A_{13}) + A_{31} (A_{12} A_{23} - A_{22} A_{13}),$    
$\displaystyle =\ $ $\displaystyle A_{11} (\epsilon_{1jk}A_{j2}A_{k3}) - A_{21} (-\epsilon_{2jk}A_{j2}A_{k3}) + A_{31} (\epsilon_{3jk}A_{j2}A_{k3}),$    
$\displaystyle =\ $ $\displaystyle A_{i1} \epsilon_{ijk} A_{j2} A_{k3},$    
$\displaystyle =\ $ $\displaystyle \epsilon_{ijk}A_{i1}A_{j2}A_{k3}.$    

Example. Show that $ \epsilon_{ijk}A_{il}A_{jm}A_{kn} =
({\rm det}\, A)\epsilon_{lmn}$.