Index Notation

Usually, rectangular Cartesian coordinates of a point are denoted by $ (x,y,z)$ and the unit vectors along $ x,\ y$ and $ z$-axes by $ \mathbf{i},\ \mathbf{j}$, and $ \mathbf{k}$ respectively. In this coordinate system, the components of a vector $ \mathbf{u}$ along $ x,\ y$, and $ z$ axes are denoted by $ u_x,\ u_y$, and $ u_z$. The vector $ \mathbf{u}$ has the representation

$\displaystyle \mathbf{u} = u_x \mathbf{i} + u_y\mathbf{j} + u_z\mathbf{k}.$    

This notation does not lend itself to any abbreviation. Therefore, instead of denoting the coordinate axes by $ x,y,z$ we will denote them by $ x_1,x_2,x_3$. Also we will denote unit vectors

\includegraphics{continuumfig2.1.eps}

along $ x_1,x_2$ and $ x_3$ axes by $ \mathbf{e}_1,\ \mathbf{e}_2$, and $ \mathbf{e}_3$ respectively. Naturally then components of a vector $ \mathbf{u}$ along $ x_1,x_2$ and $ x_3$ axes will be indicated by $ u_1,u_2$, and $ u_3$ respectively. Hence we can write

\begin{displaymath}\begin{split}\mathbf{u} =\ & u_1\mathbf{e}_1 + u_2\mathbf{e}_2 + u_3\mathbf{e}_3,\\ =\ & u_j\mathbf{e}_j.\end{split}\end{displaymath} (2.4.1)

Similarly,

\begin{displaymath}\begin{split}\mathbf{v} =\ & v_1\mathbf{e}_1 + v_2\mathbf{e}_2 + v_3\mathbf{e}_3,\\ =\ & v_j \mathbf{e}_j.\end{split}\end{displaymath}    

The dot product $ \mathbf{u}\cdot \mathbf{v}$ can simply be written as

$\displaystyle \mathbf{u} \cdot \mathbf{v} = u_1v_1 + u_2v_2 + u_3v_3 = u_iv_i.$ (2.4.2)

Since $ \mathbf{e}_1,\ \mathbf{e}_2,\
\mathbf{e}_3$ are mutually orthogonal unit vectors, therefore,

\begin{displaymath}\begin{split}&\mathbf{e}_1 \cdot \mathbf{e}_1 = \mathbf{e}_2 ...
... \mathbf{e}_3 = \mathbf{e}_1 \cdot \mathbf{e}_3 = 0.\end{split}\end{displaymath}    

These equations can be summarized as

$\displaystyle \mathbf{e}_i\cdot \mathbf{e}_j = \delta_{ij}.$ (2.4.3)

Exercise. Using the index notation, write expressions for

(1)
the magnitude of a vector $ \mathbf{u}$,
(2)
$ \cos\theta;\
\theta$ being the angle between vectors $ \mathbf{u}$ and $ \mathbf{v}$.

As another illustration of the use of the index notation, consider a line element with components $ dx_1,\ dx_2,\ dx_3$. The square of the length, $ ds$, of the line element is given by

$\displaystyle ds^2 =\ $ $\displaystyle dx^2_1 + dx^2_2 + dx^2_3,$    
$\displaystyle =\ $ $\displaystyle dx_i dx_i$    
$\displaystyle =\ $ $\displaystyle \delta_{ij}dx_idx_j.$    

Finally, we note that the differential of a function $ f(x_1,x_2,x_3)$ can be written as

$\displaystyle df =\ $ $\displaystyle \frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2 + \frac{\partial f}{\partial x_3} dx_3,$    
$\displaystyle =\ $ $\displaystyle \frac{\partial f}{\partial x_i} dx_i.$