Kronecker Delta.

The Kronecker Delta, denoted by $ \delta_{ij}$, is defined as

$\displaystyle \delta_{ij} = \left\{\begin{array}{lll}1 & {\rm if} & i=j,\\  0 & {\rm if} & i \ne j.\end{array}\right.$    

That is,

\begin{displaymath}\begin{split}&\delta_{11} = \delta_{22} = \delta_{33} = 1,\\ ...
..._{21} = \delta_{23} = \delta_{31} = \delta_{32} = 0.\end{split}\end{displaymath}    

In other words, the matrix

$\displaystyle \left[\begin{array}{ccc}\delta_{11} & \delta_{12} & \delta_{13}\\...
...{22} & \delta_{23}\\  \delta_{31} & \delta_{32} & \delta_{33}\end{array}\right]$    

is the identity matrix

$\displaystyle \left[\begin{array}{ccc} 1 & 0 & 0\\  0 & 1 & 0\\  0 & 0 & 1\end{array}\right].$    

We note the following relations

(a)$\displaystyle \ \ $ $\displaystyle \delta_{ii} = \delta_{11} + \delta_{22} + \delta_{33} = 1 + 1 + 1 = 3,$    
(b)$\displaystyle \ \ $ $\displaystyle \delta_{1m}a_m = \delta_{11}a_1 + \delta_{12}a_2 + \delta_{13}a_3 = a_1,$    
  $\displaystyle \delta_{2m}a_m = \delta_{21}a_1 + \delta_{22}a_2 + \delta_{23}a_3 = a_2,$    
  $\displaystyle \delta_{3m}a_m = \delta_{31}a_1 + \delta_{32}a_2 + \delta_{33}a_3 = a_3.$    

Or, in general

$\displaystyle \delta_{im}a_m = a_i.$    

Similarly, one can show that

$\displaystyle \delta_{im}T_{mj} = T_{ij}.$    

In particular,

$\displaystyle \delta_{im}\delta_{mj} = \delta_{ij};\ \delta_{im}\delta_{mj}\delta_{jn} = \delta_{in}.$