Tensor Product Between Two Vectors

The tensor product (or the dyadic product) $ \otimes$ between two vectors $ \mathbf{a}$ and $ \mathbf{b}$ is defined as

$\displaystyle (\mathbf{a}\otimes \mathbf{b})\mathbf{c} = (\mathbf{b} \cdot \mathbf{c})\mathbf{a}\ $   for every vector$\displaystyle \ \mathbf{c}.$ (2.8.2.1)

Thus $ (\mathbf{a}\otimes \mathbf{b})$ transforms a vector $ \mathbf{c}$ into a vector parallel to $ \mathbf{a}$. Since it transforms a vector into a vector and obeys (2.8.1.1), it is a linear transformation. Note that

$\displaystyle \mathbf{a}\otimes \mathbf{b}\ne \mathbf{b}\otimes \mathbf{a}.$ (2.8.2.2)