Components of a Second-Order Tensor

Let $ \hat\mathbf{e}_1,\hat\mathbf{e}_2,\hat\mathbf{e}_3$ be a set of orthonormal basis vectors (i.e. $ \hat\mathbf{e}_1,\hat\mathbf{e}_2,\hat\mathbf{e}_3$ are mutually orthogonal unit vectors). For any vector $ \mathbf{a}$,

$\displaystyle \mathbf{a} = a_i\hat \mathbf{e}_i.$ (2.8.3.1)

Let $ \mathbf{b} = \mathbf{T}\mathbf{a}$. Then

$\displaystyle \mathbf{b} = \mathbf{T} (a_j\hat\mathbf{e}_j) = a_j(\mathbf{T}\hat\mathbf{e}_j),$ (2.8.3.2)

or

$\displaystyle b_i\hat \mathbf{e}_i = a_j(\mathbf{T}\hat\mathbf{e}_j).$ (2.8.3.3)

Taking the inner product of both sides of this eqn. with $ \hat\mathbf{e}_k$, we obtain

$\displaystyle b_k = \hat\mathbf{e}_k\cdot a_j(\mathbf{T}\hat\mathbf{e}_j) = a_j\hat\mathbf{e}_k\cdot (\mathbf{T}\hat\mathbf{e}_j) = a_jT_{kj}$ (2.8.3.4)

where

$\displaystyle T_{kj} = \hat\mathbf{e}_k\cdot (\mathbf{T}\hat\mathbf{e}_j)$ (2.8.3.5)

is called the component of $ \mathbf{T}$ with respect to the basis $ \hat\mathbf{e}_i$.

For computation purposes, eqn. (2.8.3.4) is written as

$\displaystyle \left\{\begin{array}{c} b_1\\  b_2\\  b_3\end{array}\right\} = \l...
...\end{array}\right]\left\{\begin{array}{c} a_1\\  a_2\\  a_3\end{array}\right\}.$ (2.8.3.6)

Analogous to the representation (2.8.3.1) for vector $ \mathbf{a}$, we have the following representation for second-order tensor $ \mathbf{T}$.

$\displaystyle \mathbf{T} = T_{ij}\hat\mathbf{e}_i\otimes \hat\mathbf{e}_j.$ (2.8.3.7)

Because of (2.8.2.2), $ T_{ij}$ need not equal $ T_{ji}$. In order to see that (2.8.3.7) is equivalent to (2.8.3.5), we evaluate $ \mathbf{T}\mathbf{a}$.

$\displaystyle \mathbf{b} = \mathbf{T}\mathbf{a} =\ $ $\displaystyle (T_{ij}\hat\mathbf{e}_i\otimes \hat\mathbf{e}_j)(a_k\hat\mathbf{e}_k),$    
$\displaystyle =\ $ $\displaystyle T_{ij} a_k(\hat\mathbf{e}_i\otimes \hat\mathbf{e}_j)\hat\mathbf{e}_k,$    
$\displaystyle =\ $ $\displaystyle T_{ij}a_k\hat\mathbf{e}_i (\hat\mathbf{e}_j\cdot\hat\mathbf{e}_k),$    
$\displaystyle =\ $ $\displaystyle T_{ij}a_k\hat\mathbf{e}_i\delta_{jk} = T_{ij}a_j \hat \mathbf{e}_i,$ (2.8.3.8)

which is equivalent to $ b_i = T_{ij} a_j$ or (2.8.3.4).

It is clear from (2.8.3.7) that the components $ T_{ij}$ of $ \mathbf{T}$ depend upon the choice of basis $ \hat\mathbf{e}_i$. Let

$\displaystyle \hat\mathbf{e}^\prime_i = Q_{ij}\hat\mathbf{e}_j$ (2.8.3.9)

where $ \mathbf{Q}$ is an orthogonal matrix (i.e. $ \mathbf{Q}\mathbf{Q}^T = \mathbf{1}$). Then

$\displaystyle \mathbf{T} =\ $ $\displaystyle T^\prime_{ij}\hat\mathbf{e}^\prime_i\otimes \hat\mathbf{e}^\prime_j = T^\prime_{ij}(Q_{ik}\hat\mathbf{e}_k)\otimes (Q_{jl}\hat\mathbf{e}_l)=$    
$\displaystyle =\ $ $\displaystyle T^\prime_{ij} Q_{ik}Q_{jl}(\hat\mathbf{e}_k\otimes \hat\mathbf{e}_l) = T_{kl}\hat\mathbf{e}_k\otimes \hat\mathbf{e}_l .$ (2.8.3.10)

Hence

$\displaystyle T_{kl} = T^\prime_{ij}Q_{ik}Q_{jl},$ (2.8.3.11)

and in matrix notation,

$\displaystyle [T] = [Q]^T[T^\prime][Q],$ (2.8.3.12)

and since $ \mathbf{Q}$ is orthogonal,

$\displaystyle [T^\prime] = [Q][T][Q]^T.$ (2.8.3.13)

The transpose $ \mathbf{T}^T$ of a second-order tenseor $ \mathbf{T}$ is defined by

$\displaystyle \mathbf{a}\cdot (\mathbf{T}^T\mathbf{b}) = \mathbf{b}\cdot (\mathbf{T}\mathbf{a})\ $   for every vector$\displaystyle \ \mathbf{a}\ $   and$\displaystyle \ \mathbf{b}.$ (2.8.3.14)

The components of $ \mathbf{T}$ and $ \mathbf{T}^T$ are related by

$\displaystyle (T^T)_{ij} = T_{ji}$ (2.8.3.15)