Displacement Vector

By definition, the displacement vector $ u_i$ of a particle is the difference between its position vectors at time $ t$ and at time $ t = t_0$ (or 0).

$\displaystyle u_i = x_i - X_i.$ (3.3.1)

In the Lagrangian description, the displacement $ u_i$ is specified as a function of $ X_i$ and $ t$. For example, consider the motion

$\displaystyle x_1 =\ $ $\displaystyle X_1t^2 + 2X_2t + X_1,$    
$\displaystyle x_2 =\ $ $\displaystyle 2X_1 t^2 + X_2t + X_2,\hspace*{1in}$ (3.3.2)
$\displaystyle x_3 =\ $ $\displaystyle \frac{1}{2} X_3t + X_3.$    

The corresponding components of the displacement are given by

$\displaystyle u_1 =\ $ $\displaystyle X_1t^2 + 2X_2t,$    
$\displaystyle u_2 =\ $ $\displaystyle 2X_1t^2 + X_2t,$    
$\displaystyle u_3 =\ $ $\displaystyle \frac{1}{2}X_3t.$    

In the Eulerian description, $ u_i$ will be expressed as a function of $ x_i$ and $ t$. Solving (3.3.2) for $ X_i$ in terms of $ x_i$ and $ t$ and substituting that in (3.3.1) we obtain

$\displaystyle u_1 =\ $ $\displaystyle x_1-X_1 = x_1 - \frac{x_1(1 + t) -2x_2t}{-3t^3 + t^2 + t + 1},$    
$\displaystyle u_2 =\ $ $\displaystyle x_2 - X_2 = x_2 - \frac{x_2(1 + t^2) - 2x_1t^2}{-3t^3 + t^2 + t + 1},$    
$\displaystyle u_3 =\ $ $\displaystyle x_3 - X_3 = x_3 - \frac{2x_3}{t+2}.$