Material Derivative

The time rate of change of a quantity such as temperature or velocity of a material particle is known as a material derivative, and is denoted by a superimposed dot or by $ D/Dt$.

(i)
When referential or Lagrangian description of a quantity is used, i.e.,

$\displaystyle \theta = \theta (X_1,\ X_2,\ X_3,\ t)$    

then

$\displaystyle \dot\theta = \frac{D\theta}{Dt} = \frac{\partial \theta}{\partial t}\bigg\vert _{X_i - \mbox{fixed}}.$ (3.5.1)

(ii)
When spatial or Eulerian description of a quantity is used, i.e.,

$\displaystyle \theta = \theta(x_1,\ x_2,\ x_3,\ t),$    

where

$\displaystyle x_i = x_i(X_1,\ X_2,\ X_3,\ t),$    

then

$\displaystyle \dot\theta = \frac{D\theta}{Dt} = \frac{\partial\theta}{\partial ...
...x_j}\hspace{.3in}\frac{\partial x_j}{\partial t}\bigg\vert _{X_i-\mbox{fixed}}.$ (3.5.2)

In rectangular Cartesian coordinates

$\displaystyle v_j = \frac{\partial x_j}{\partial t}\bigg\vert _{X_i - \mbox{fixed}}$ (3.5.3)

is the $ j$th component of the velocity of a material particle. Therefore, in rectangular Cartesian coordinates,

$\displaystyle \dot\theta = \frac{\partial\theta}{\partial t} + \frac{\partial\theta}{\partial x_j} v_j.$ (3.5.4)

Note that in (3.5.4) $ \theta$ is given in the spatial description.

Example: Given the motion

$\displaystyle x_i = X_i (1 + t),\ t\ge 0,$    

find the spatial description of the velocity field.

Solution

$\displaystyle x_i =\ $ $\displaystyle X_i (1 + t)$    
$\displaystyle v_i =\ $ $\displaystyle \dot x_i = X_i = \frac{x_i}{1 + t}.$    

Example: Given

$\displaystyle \theta = 2(x^2_1 + x^2_2)\ $   where$\displaystyle \ x_i = X_i (1 + t).$    

Find, at $ t = 1$, the rate of change of temperature of the material particle which in the reference configuration was at $ (1,1,1)$.

Solution

(i)$\displaystyle \hspace*{.7in} \theta =\ $ $\displaystyle 2 (x^2_1 + x^2_2)$    
$\displaystyle =\ $ $\displaystyle 2 [X^2_1 (1 + t)^2 + X^2_2(1 + t)^2]$    
$\displaystyle \dot\theta =\ $ $\displaystyle 2[2X^2_1(1 + t) + 2X^2_2(1 + t)]$    
% latex2html id marker 12114
$\displaystyle \therefore \dot\theta\ $ at$\displaystyle \ t = 1\ $   for the material particle$\displaystyle \ (1,1,1) = 16.$    
$\displaystyle (ii)\hspace*{.7in} \dot\theta =\ $ $\displaystyle \frac{\partial\theta}{\partial t} + \frac{\partial\theta}{\partial x_j}\ \frac{\partial x_j}{\partial t}$    
$\displaystyle =\ $ $\displaystyle 0 + 4x_1\frac{x_1}{1 + t} + 4x_2\frac{x_2}{1 + t}.$    

At $ t = 1$, for the material particle $ (1,1,1)$

$\displaystyle x_i =\ $ $\displaystyle 2(\delta_{i1} + \delta_{i2} + \delta_{i3})$    
% latex2html id marker 12127
$\displaystyle \therefore \hspace*{.3in} \dot\theta =\ $ $\displaystyle \frac{4(2)^2}{1 + 1} + \frac{4(2)^2}{1 + 1} = 16.$    

Exercise: The motion of a continuous medium is defined by the equations

$\displaystyle x_1 =\ $ $\displaystyle \frac{1}{2}(X_1 + X_2)e^t + \frac{1}{2}(X_1 - X_2) e^{-t},\ x_2 = \frac{1}{2}(X_1 + X_2)e^t-\frac{1}{2} (X_1 - X_2)e^{-t},$    
$\displaystyle x_3 =\ $ $\displaystyle X_3,\hspace{2in} 0 \le t <$   constant$\displaystyle .$    

(a)
Express the velocity components in terms of referential coordinates and time.
(b)
Express the velocity components in terms of spatial coordinates and time.

Exercise: Given the motion of a body to be $ x_i = (X_1 +
ktX_2)\delta_{i1} + X_2\delta_{i2} + X_3\delta_{i3}$, and the temperature field by $ \theta = x_1 + x_2$, find $ \dot\theta$ for the particle which currently is at the place $ (1,1,1)$.