Finding Acceleration of a Particle from a Given Velocity Field.

The acceleration of a material particle is the rate of change of its velocity. If the motion of a continuum is given by

$\displaystyle x_i = x_i (X_1,\ X_2,\ X_3,\ t)$   with$\displaystyle \ x_i (X_1,\ X_2,\ X_3,\ 0) = X_i$    

then the velocity $ \mathbf{v}$, at time $ t$, of a particle $ X_j$ is given by

$\displaystyle v_i = \frac{\partial x_i}{\partial t}\bigg\vert _{X_j-\mbox{fixed}} = \dot x_i,$    

and the acceleration $ \mathbf{a}$, at time $ t$, of a particle $ X_j$ is given by

$\displaystyle a_i = \frac{\partial v_i}{\partial t}\bigg\vert _{X_j-\mbox{fixed}} = \dot v_i.$    

Thus, if the material description of velocity $ \mathbf{v}(X_1,\
X_2,\ X_3,\ t)$ is known, then the acceleration is computed simply by taking the partial derivative with respect to time of the function $ \mathbf{v}(X_1,\
X_2,\ X_3,\ t)$. On the other hand, if only the spatial description of velocity (i.e. $ v_i = v_i(x_1,\ x_2,\ x_3,\ t)$) is known, then the computation of acceleration involves the use of eqn. (3.5.2). That is,

$\displaystyle a_i =\ $ $\displaystyle \frac{\partial v_i}{\partial t}\bigg\vert _{X_j-\mbox{fixed}} = \...
...{\partial x_k}\frac{\partial x_k}{\partial t} \bigg\vert _{X_j-\mbox{fixed}}\ ,$    
$\displaystyle =\ $ $\displaystyle \frac{\partial v_i}{\partial t}\bigg\vert _{x_j-\mbox{fixed}} + \frac{\partial v_i}{\partial x_k} v_k.$    

The part of acceleration given by $ v_k\displaystyle\frac{\partial v_i}{\partial
x_k}$ is called convective acceleration. When the motion is only along $ x_1$-axis, i.e. $ v_2 = v_3 = 0$ and $ v_1 = v_1(x_1,t)$, then

$\displaystyle a_1 = \frac{\partial v_1}{\partial t} + v_1\frac{\partial v_1}{\partial x_1}\ .$    

Example: A fluid rotates as a rigid body with a constant angular velocity $ \omega\mathbf{e}_3$.

(a)
Write out explicitly the components of the velocity of a material particle in the Lagrangian and Eulerian descriptions of motion.
(b)
Compute the acceleration field in the Eulerian description.

Solution:

\includegraphics{continuumfig3.3.eps}

(a)
Recall that

$\displaystyle \mathbf{v} = {\mbox{\boldmath {$\omega$}}}\times \mathbf{r}.$    

Thus

$\displaystyle v_i =\ $ $\displaystyle \varepsilon_{ijk}\omega_j x_k = \varepsilon_{ijk}\omega\delta_{j3}x_k,$    
$\displaystyle =\ $ $\displaystyle \omega\varepsilon_{i3k}x_k,$    

is the Eulerian description of velocity.

To convert these expressions into the Lagrangian description, let the fluid particle which presently is at place $ P$ be at place $ Q$ at $ t =
0$. Then, referring to Fig. 3.6.1,

  $\displaystyle \theta - \alpha = \omega t,$    
  $\displaystyle \theta = \alpha + \omega t = \tan^{-1}\left(\frac{X_2}{X_1}\right) + \omega t.$    

Since

$\displaystyle x_1 =\ $ $\displaystyle OP\cos\theta\ ,$    
$\displaystyle =\ $ $\displaystyle OQ\cos\theta\ ,$    
$\displaystyle =\ $ $\displaystyle \sqrt{X^2_1 + X^2_2}\cos\theta\ ,$    
$\displaystyle v_1 =\ $ $\displaystyle \omega\varepsilon_{132}x_2 = -\omega\sqrt{X^2_1 + X^2_2}\ \sin(\tan^{-1}\left(\frac{X_2}{X_1}\right) + \omega t)\ ,$    
$\displaystyle v_2 =\ $ $\displaystyle \omega\varepsilon_{231} x_1 = \omega\sqrt{X^2_1 + X^2_2}\ \cos (\tan^{-1}\left(\frac{X_2}{X_1}\right) + \omega t)\ .$    

(b)

$\displaystyle a_i =\ $ $\displaystyle \frac{\partial v_i}{\partial t} + \frac{\partial v_i}{\partial x_j} v_j\ ,$    
$\displaystyle =\ $ $\displaystyle 0 + \omega\varepsilon_{i3k}\delta_{kj}v_j\ ,$    
$\displaystyle =\ $ $\displaystyle \omega\varepsilon_{i3j}(\omega\varepsilon_{j3m}x_m)\ ,$    
$\displaystyle =\ $ $\displaystyle \omega^2\varepsilon_{i3j}\varepsilon_{3mj}x_m\ ,$    
$\displaystyle =\ $ $\displaystyle \omega^2(\delta_{i3}\delta_{3m} - \delta_{im}\delta_{33})x_m\ ,$    
$\displaystyle a_i =\ $ $\displaystyle \omega^2(\delta_{i3}x_3 - x_i)\ .$    
% latex2html id marker 12231
$\displaystyle \therefore\hspace{.2in} a_1 =\ $ $\displaystyle - \omega^2x_1\ ,$    
$\displaystyle a_2 =\ $ $\displaystyle -\omega^2x_2\ ,$    
$\displaystyle a_3 =\ $ $\displaystyle 0\ .$    

Exercise: Given

$\displaystyle \mathbf{v} = \frac{x_1\mathbf{e}_1 + x_2\mathbf{e}_2}{x^2_1 + x^2_2},\ \theta = 2(x^2_1 + x^2_2)\ ,$    

determine the acceleration and the rate of change of temperature of the material particle which currently is at the place $ (1,1)$.

Exercise: For the motion

$\displaystyle x_i = X_i + \sin (\pi t) \sin (\pi X_1)\delta_{i2}\ ,$    

find the velocity and acceleration in referential and spatial descriptions.