Deformation of Areas and Volumes

Consider two different infinitesimal line elements $ \mathbf{P}\mathbf{Q}$ and $ \mathbf{P}\mathbf{R}$ emanating from a point $ P$ in the reference configuation. During the deformation lines $ \mathbf{P}\mathbf{Q}$ and $ \mathbf{P}\mathbf{R}$ are deformed into

\includegraphics{continuumfig3.6.eps}

$ \mathbf{P}^\prime \mathbf{Q}^\prime$ and $ \mathbf{P}^\prime\mathbf{R}^\prime$ respectively. Hence the parallelogram whose adjacent sides are $ \mathbf{P}\mathbf{Q}$ and $ \mathbf{P}\mathbf{R}$ in the reference configuration is deformed into the one with adjacent sides as $ \mathbf{P}^\prime \mathbf{Q}^\prime$ and $ \mathbf{P}^\prime\mathbf{R}^\prime$. Let us denote the areas of these by $ d\mathbf{A}$ and $ d\mathbf{a}$ respectively. Then

$\displaystyle d\mathbf{A} =\ $ $\displaystyle \mathbf{P}\mathbf{Q}\times \mathbf{P}\mathbf{R}$    
% latex2html id marker 13091
$\displaystyle \therefore\hspace{.2in} dA_B =\ $ $\displaystyle \varepsilon_{BCD}(PQ)_C(PR)_D\ .$    

Also

$\displaystyle \mathbf{d}\mathbf{a}=\ $ $\displaystyle \mathbf{P}^\prime\mathbf{Q}^\prime\times \mathbf{P}^\prime\mathbf{R}^\prime\ ,$    
$\displaystyle da_i =\ $ $\displaystyle \varepsilon_{ijk}(P^\prime Q^\prime )_j(P^\prime R^\prime )_k\ .$    

Recalling that $ (P^\prime Q^\prime)_j =
F_{jC}(PQ)_C$, we obtain

$\displaystyle da_i =\ $ $\displaystyle \varepsilon_{ijk}F_{jC}(PQ)_CF_{kD}(PR)_D\ ,$    
$\displaystyle =\ $ $\displaystyle \varepsilon_{pjk}F_{jC}F_{kD}(F_{pB}(F^{-1}_{Bi}))(PQ)_C (PR)_D\ ,$    
$\displaystyle =\ $ $\displaystyle J\varepsilon_{BCD}(F^{-1})_{Bi}(PQ)_C(PR)_D\ ,$    
$\displaystyle =\ $ $\displaystyle J(F^{-1})_{Bi}dA_B.$    

Hence

$\displaystyle \mathbf{d}\mathbf{a} = J(\mathbf{F}^{-1})^T\mathbf{d}\mathbf{A}.$ (3.10.1)

Now consider the parallelepiped formed by three nonplanar infinitesimal line elements $ \mathbf{P}\mathbf{Q}$, $ \mathbf{P}\mathbf{R}$ and $ \mathbf{P}\mathbf{S}$ passing through a point $ P$ in the reference configuration. Because of the deformation, the parallelepiped is deformed into the one whose three concurrent sides are $ \mathbf{P}^\prime \mathbf{Q}^\prime$, $ \mathbf{P}^\prime\mathbf{R}^\prime$ and $ \mathbf{P}^\prime\mathbf{S}^\prime$. If $ dV$ and $ dv$ denote the volumes of these in the reference and the current configurations respectively, then

$\displaystyle dV = \mathbf{P}\mathbf{Q}\times \mathbf{P}\mathbf{R}\cdot\mathbf{P}\mathbf{S} = \varepsilon_{BCD}(PQ)_B(PR)_C(PS)_D.$    

Similarly

$\displaystyle dv = \mathbf{P}^\prime\mathbf{Q}^\prime\times \mathbf{P}^\prime\m...
...psilon_{ijk}(P^\prime Q^\prime )_i(P^\prime R^\prime )_j(P^\prime S^\prime )_k.$    

Substituting

$\displaystyle (P^\prime Q^\prime)_i =\ $ $\displaystyle F_{iB}(PQ)_B\ etc.,\ $   we get    
$\displaystyle dv =\ $ $\displaystyle \varepsilon_{ijk}F_{iB}(PQ)_BF_{jC}(PR)_CF _{kD}(PS)_D\ ,$    
$\displaystyle =\ $ $\displaystyle J\varepsilon_{BCD}(PQ)_B(PR)_C(PS)_D\ ,$    
$\displaystyle =\ $ $\displaystyle J\, dV\ .$    

Hence

$\displaystyle dv = J\, dV\ .$ (3.10.2)

A deformation such that

$\displaystyle dv = dV$    

at every material point in the body is called an isochoric (volume preserving) deformation. Thus for an isochoric deformation, $ J = 1$ at each material point of the body. Examples of isochoric deformations are the simple shearing deformation given in the example problem on page 3-2 and the one given in the exercise on page 3-31. Note that the latter is not a homogeneous deformation even though it is isochoric.

Exercise: Given the following deformation

$\displaystyle u_1 = 2X^2_1 + X_1X_2,\hspace{.2in} u_2 = X^2_2,\hspace{.2in} u_3 = 0.$    

At the material point $ (1/2,0,0)$ in the reference configuration, consider an infinitesimal plane formed by the vectors $ 10^{-2}(1,0,0)$ and $ 10^{-2}(1,1,0)$. Find the (vector) area of the element into which this plane is deformed.

Exercise: The displacement components for a body are $ u_1 =
2X_1 + X_2,\ u_2 = X_3,\ u_3 = X_3-X_2$. At the material point $ (1,0,0)$ on the surface of the body in the reference configuration, an element of area has components $ 10^{-2}(1,1,1)$. Find the components of the area into which this is deformed.