Rate of Deformation

Let us consider a material element $ \mathbf{P}^\prime \mathbf{Q}^\prime$ emanating from a material point located at $ P^\prime (x_1,x_2,x_3)$ in the present configuration at time $ t$. We wish to compute $ \displaystyle\frac{D(\mathbf{P}^\prime\mathbf{Q}^\prime)}{Dt}$, the rate of change of length and direction of $ \mathbf{P}^\prime \mathbf{Q}^\prime$. Let $ P^\prime$ be the deformed position of the material point located at $ P(X_1,X_2,X_3)$ in the reference configuration and $ Q^\prime$ that of $ Q(X_A
+ dX_A)$. Then

$\displaystyle (P^\prime Q^\prime )_i = x_i (X_A + dX_A,t) - x_i (X_A,t).$    

Thus,

\begin{displaymath}\begin{split}\frac{D}{Dt}(P^\prime Q^\prime)_i =\ & v_i(X_A +...
...partial v_i}{\partial X_A}dX_A,\\ =\ & v_{i,A}dX_A. \end{split}\end{displaymath} (3.12.1)

Equation (3.12.1) expresses $ \displaystyle\frac{D(\mathbf{P}^\prime\mathbf{Q}^\prime)}{Dt}$ in a material description. To obtain $ \displaystyle\frac{D(\mathbf{P}^\prime\mathbf{Q}^\prime)}{Dt}$ in a spatial description, we note that since $ v_i(X_A,t)$ is the velocity of a material point $ P$ presently at the position $ x_i$, therefore, if a spatial description of velocity is employed, this velocity is given by $ v_i = v_i(x_j,t)$. Note that $ v_i(x_j,t)$ and $ v_i(X_A,t)$ are, in general, different functions. Thus,

$\displaystyle \frac{D(\mathbf{P}^\prime\mathbf{Q}^\prime)_i}{Dt} =\ $ $\displaystyle v_i(x_j + dx_j,t) - v_i(x_j,t),$    
$\displaystyle \simeq\ $ $\displaystyle \frac{\partial v_i}{\partial x_j}dx_j = v_{i,j}dx_j,$ (3.12.2)
$\displaystyle =\ $ $\displaystyle [1/2(v_{i,j}+v_{j,i}) + 1/2 (v_{i,j} - v_{j,i})]dx_j,$    
$\displaystyle =\ $ $\displaystyle (D_{ij} + W_{ij})dx_j,$ (3.12.3)

where we have set

$\displaystyle D_{ij} =\ $ $\displaystyle 1/2 (v_{i,j} + v_{j,i}),$ (3.12.4)
$\displaystyle W_{ij} = \ $ $\displaystyle 1/2 (v_{i,j} - v_{j,i}).$    

$ D_{ij}$, the symmetric part of the velocity gradient $ v_{i,j}$, is known as the rate of deformation tensor or the strain-rate tensor, and $ W_{ij}$, the antisymmetric part of the velocity gradient $ v_{i,j}$, is known as the spin tensor.

In the following, we give a geometric interpretation of the elements of $ D_{ij}$. Let

$\displaystyle \mathbf{P}^\prime\mathbf{Q}^\prime = ds\mathbf{n}$    

where $ \mathbf{n}$ is a unit vector in the direction of $ \mathbf{P}^\prime\mathbf{Q}^\prime = d\mathbf{x}$. Then

$\displaystyle \frac{D}{Dt} (ds^2) =\ $ $\displaystyle \frac{D}{Dt} (dx_idx_i) = 2dx_i\frac{D}{Dt}(dx_i)\ ,$    
or$\displaystyle \hspace{.2in} ds\frac{D}{Dt}(ds) =\ $ $\displaystyle dx_i(D_{ij} + W_{ij})dx_j\ ,$    

where we have substituted for $ \displaystyle\frac{D}{Dt}(dx_i)$ from (3.12.3). Since $ W_{ij} = -W_{ji}$, therefore

$\displaystyle dx_iW_{ij}dx_j = 0\ ,$    

and we get

$\displaystyle ds\frac{D}{Dt}(ds) = dx_iD_{ij}dx_j\ ,$    

or

$\displaystyle \frac{1}{ds}\frac{D(ds)}{Dt} = n_iD_{ij}n_j\ .$ (3.12.6)

If $ \mathbf{n} = (1,0,0)$, the right-hand side of (3.12.6) equals $ D_{11}$. Thus $ D_{11}$ gives the rate of change of length per unit length known as stretching or rate of extension for a material line presently parallel to $ x_1$-axis. Similarly $ D_{22}$ and $ D_{33}$ give, respectively, the stretching of a material line presently in the $ x_2$- and $ x_3$-direction. To obtain a physical interpretation of the off-diagonal elements of $ D_{ij}$, let

$\displaystyle \mathbf{P}^\prime\mathbf{Q}^\prime = ds_1\mathbf{n}$   and$\displaystyle \quad \mathbf{P}^\prime\mathbf{R}^\prime = ds_2\mathbf{m}\ .$    

Then

  $\displaystyle \frac{1}{ds_1ds_2}\frac{D}{Dt}(\mathbf{P}^\prime\mathbf{Q}^\prime...
...rime\mathbf{R}^\prime) = m_i (D_{ij} + W_{ij})n_j + n_i (D_{ij} + W_{ij})m_j\ ,$    
  $\displaystyle \frac{1}{ds_1ds_2}\frac{D(ds_1ds_2)}{Dt}\cos\theta_{(m,n)} -\sin\theta_{(m,n)}\dot\theta_{(m,n)} = 2m_iD_{ij}n_j\ .$ (3.12.7)

Here $ \theta_{(m,n)}$ is the angle between directions $ \mathbf{m}$ and $ \mathbf{n}$. Thus for $ \mathbf{m} = (1,0,0)$ and $ \mathbf{n} = (0,1,0)$, the right-hand side of (3.12.7) equals $ 2D_{12}$ and the left-hand side equals $ -\dot\theta_{(m,n)}$. Hence $ 2D_{12}$ equals the rate of decrease of angle from $ \displaystyle\frac{\pi}{2}$ of two line elements presently parallel to $ x_1$ and $ x_2$-axes, known as shearing or rate of shear. A similar interpretation holds for $ D_{23}$ and $ D_{31}$.

Since $ D_{ij}$ is symmetric, we also have the result that there always exist three mutually perpendicular directions (eigenvectors of $ D_{ij}$) along which the stretching (an eigenvalue of $ D_{ij}$) is either maximum or minimum among stretchings for all differential elements extending from the material particle which currently is at $ P^\prime$.

Note that the strain-rate tensor does not, in general, equal the time rate of change of the strain tensor. To prove this, we first conclude from eqns. (3.12.2) and (3.7.7) that

$\displaystyle \dot F_{iA} dX_A = v_{i,j} F_{jA} dX_A\ ,$    

which must hold for all choices of $ dX_A$. Thus

$\displaystyle v_{i,j} = \dot F_{iA}(F^{-1})_{Aj},\ $   or$\displaystyle \ \mathbf{L} = \dot\mathbf{F}\mathbf{F}^{-1}\ ,$ (3.12.8)

where $ \mathbf{L}$ is the spatial velocity gradient. Differentiation of both sides of (3.8.2) with respect to time and the definition (3.8.6)$ _1$ of the strain tensor $ \mathbf{E}$ gives

$\displaystyle \dot\mathbf{E} =\ $ $\displaystyle 2\dot\mathbf{C} = \dot\mathbf{F}^T\mathbf{F} + \mathbf{F}^T\dot\mathbf{F} = \mathbf{F}^T(\mathbf{L}^T + \mathbf{L})\mathbf{F}\ ,$    
$\displaystyle =\ $ $\displaystyle 2\mathbf{F}^T\mathbf{D}\mathbf{F}\ .$ (3.12.9)

Hence $ \dot\mathbf{E} \ne \mathbf{D}$, and the strain-rate tensor $ \mathbf{D}$ should not be confused with the time rate of change of the strain tensor $ \mathbf{E}$.

We now attempt to provide a physical interpretation of the spin tensor. Let $ \mathbf{n}$ be a unit eigenvector of $ \mathbf{D}$, i.e., $ \mathbf{D}\mathbf{n} = \lambda\mathbf{n}$ where $ \lambda$ is the eigenvalue corresponding to $ \mathbf{n}$. From (3.12.3), we have

$\displaystyle (dsn_i)^\cdot =\ $ $\displaystyle \dot{\overline{ds}}n_i + ds\dot n_i = (D_{ij} + W_{ij})dsn_j\ ,$    
$\displaystyle \dot n_i =\ $ $\displaystyle D_{ij} n_j + W_{ij} n_j - (n_kD_{kl}n_l)n_i\ ,$    
$\displaystyle =\ $ $\displaystyle W_{ij} n_j\ ,$ (3.12.10)

where we have used (3.12.6). It states that the spin tensor operating on a unit eigenvector of $ \mathbf{D}$ gives the rate of change of that unit vector. Thus the spin equals the angular velocity of the principal axes of stretching.

The axial vector

$\displaystyle w_i = -\epsilon_{ijk}W_{jk}\ $   or$\displaystyle \ \ \mathbf{w} =$   curl$\displaystyle \mathbf{v}\ ,$    

is the vorticity vector; its direction is the axis of spin, and its magnitude is the vorticity magnitude, $ w$.

$\displaystyle w = \sqrt{w_iw_i} = \sqrt{sW_{jk}W_{jk}}\ .$    

We now show that the spin tensor defined by (3.12.4)$ _2$ does not equal the rate of change of the rotation matrix $ \mathbf{R}$. Equations (3.12.9) and (3.13.1)$ _1$ give

$\displaystyle \mathbf{L} = (\dot\mathbf{R}\mathbf{U} + \mathbf{R}\dot\mathbf{U})(\mathbf{U}^{-1}\mathbf{R}^T)\ ,$ (3.13.15)

or

$\displaystyle \mathbf{D} + \mathbf{W} =\ $ $\displaystyle \dot\mathbf{R}\mathbf{R}^T + \mathbf{R}\dot\mathbf{U}\mathbf{U}^{-1}\mathbf{R}^T\ ,$    
$\displaystyle =\ $ $\displaystyle \dot\mathbf{R}\mathbf{R}^T + \frac{1}{2}\mathbf{R}(\dot\mathbf{U}...
... (\dot\mathbf{U}\mathbf{U}^{-1} - \mathbf{U}^{-1}\dot\mathbf{U})\mathbf{R}^T\ ,$ (3.13.16)

where we have added and subtracted $ \displaystyle\frac{1}{2}
\mathbf{R}\mathbf{U}^{-1}\dot\mathbf{U}\mathbf{R}^T$ to the right-hand side. Equating symmetric and skew-symmetric tensors on both sides, we obtain

\begin{displaymath}\begin{split}\mathbf{D} =\ & \frac{1}{2}\mathbf{R}(\dot\mathb...
...{-1} - \mathbf{U}^{-1}\dot\mathbf{U})\mathbf{R}^T\ .\end{split}\end{displaymath} (3.13.17)

These equations clearly evince that $ \mathbf{D}\ne
\dot\mathbf{U}$ and $ \mathbf{W}\ne \dot\mathbf{R}$.

Taking the material derivative of both sides of eqn. (3.10.2) we obtain

$\displaystyle \frac{D}{Dt} (dv) =\ $ $\displaystyle \dot J\, dV,$ (3.12.11)
$\displaystyle =\ $ $\displaystyle J\left(\frac{\partial v_i}{\partial x_i}\right)\, dV,$ (3.12.12)
$\displaystyle =\ $ $\displaystyle \frac{\partial v_i}{\partial x_i}\, dv,$    

and, therefore,

$\displaystyle \frac{1}{dv}\frac{\cdot}{dv} = \frac{\partial v_i}{\partial x_i} = D_{ii} = I_D.$ (3.12.13)

In going from (3.12.11) to (3.12.12) we used

$\displaystyle \dot J = J\frac{\partial v_i}{\partial x_i} = JI_D$    

which can be obtained from eqns. (3.11.4), (3.11.5) and (3.11.6). Thus the first principal invariant $ I_D$ of the rate of deformation tensor $ D_{ij}$ gives the rate of change of volume per unit volume.

We now derive an expression for the rate of change of an area element. Rewriting eqn. (3.10.1) as $ \mathbf{F}^Td\mathbf{a} = Jd\mathbf{A}$ and taking the time derivative of both sides, we obtain

  $\displaystyle \dot\mathbf{F}^Td\mathbf{a} + \mathbf{F}^T\dot{\overline{d\mathbf{a}}} = \dot Jd\mathbf{A}\ ,$    
  $\displaystyle \mathbf{F}^T\mathbf{L}^Td\mathbf{a} + \mathbf{F}^T\dot{\overline{d\mathbf{a}}} = JI_Dd\mathbf{A}\ ,$    
$\displaystyle \noalign{\mbox{or}}$ $\displaystyle \dot{\overline{d\mathbf{a}}} = (I_D - \mathbf{L}^T)d\mathbf{a},\ ...
...da_i}} = \left(I_D\delta_{ij} - \frac{\partial v_j}{\partial x_i}\right)da_j\ .$ (3.12.14)

In an isochoric deformation, $ \dot{\overline{dv}} = 0$ but $ \dot{\overline{d\mathbf{a}}}\ne \mathbf{0}$ in general.

Example: Given the velocity field

$\displaystyle v_i = 2x_2\delta_{1i},$    

find
(a)
the rate of deformation and the spin tensors,
(b)
the rate of extension per unit length of the line element $ \mathbf{P}^\prime\mathbf{Q}^\prime = 10^{-2}(1,2,0,)$,
(c)
the maximum and the minimum rates of extension.

Solution

(a)
The matrix of the velocity gradient is

$\displaystyle [v_{i,j}] = \left[\begin{array}{ccc} 0 & 2 & 0\\  0 & 0 & 0\\  0 & 0 & 0\end{array}\right]\ .$    

Therefore,

$\displaystyle D_{ij} =\ $ $\displaystyle 1/2[v_{i,j} + v_{j,i}] = \left[\begin{array}{ccc} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 0\end{array}\right],$    
$\displaystyle W_{ij} = \ $ $\displaystyle 1/2[v_{i,j} - v_{j,i}] = \left[\begin{array}{rcc} 0 & 1 & 0\\ -1 & 0 & 0\\ 0 & 0 & 0\end{array}\right].$    

(b)
Given $ \mathbf{P}^\prime\mathbf{Q}^\prime =
10^{-2}(1,2,0) = 10^{-2}(\sqrt 5 ) \left(\displaystyle\frac{1}{\sqrt
5},\frac{2}{\sqrt 5},0\right)$. Thus $ \mathbf{n} = (1/\sqrt 5,\ 2/\sqrt 5,\
0)$. From eqn. (3.12.6)

$\displaystyle \frac{1}{ds}\frac{D(ds)}{Dt} =\ $ $\displaystyle n_iD_{ij}n_j = \{\mathbf{n}\}^T [\mathbf{D}]\{\mathbf{n}\}$    
$\displaystyle =\ $ $\displaystyle (1/\sqrt 5\ \ 2/\sqrt 5\ \ 0)\left[\begin{array}{ccc}0 & 1 & 0\\ ...
...ght]\left[\begin{array}{c} 1/\sqrt 5\\ 2/\sqrt 5\\ 0\end{array}\right] = 4/5\ .$    

(d)
From the characteristic equation

$\displaystyle \det [D_{ij} - \lambda\delta_{ij}] = 0,$    

we determine the eigenvalues of the tensor $ D_{ij}$ as $ \lambda
= 0,\ \pm 1$. Therefore, 1 is the maximum and $ -1$ the minimum rate of extension. The eigenvector $ \mathbf{n}^{(1)}$ (for $ \lambda_1 = 1$) determined from

  $\displaystyle D_{ij}n^{(1)}_j - \lambda_1\delta_{ij}n^{(1)}_j = 0$    
and$\displaystyle \hspace{.2in}$ $\displaystyle n^{(1)}_jn^{(1)}_j = 1$    

is $ \mathbf{n}^{(1)} = (1/\sqrt 2) (1,1,0)$. Similarly $ \mathbf{n}^{(2)}$ corresponding to $ \lambda_2 = -1$ is $ (1/\sqrt 2)(1,-1,0)$. The third eigenvector is $ \mathbf{n}^{(3)} = (0,0,1)$.

Exercise: For the velocity field

$\displaystyle v_i = 2x^2_2\delta_{i1},$    

find
a)
the rate of extension per unit length of a material line element which in the present configuration is given by $ 10^{-2}(1,1,0)$ through the point $ (5,3,0)$,
b)
the deformation corresponding to the given velocity field if $ x_i = X_i$ at time $ t =
0$,
c)
the principal stretches and the deformed position of the axis of the maximum principal stretch for the material particle which at $ t = 1$ is at $ (0,1/2,0)$,
d)
principal stretchings and their axes for the material particle which currently is at $ (0,1/2,0)$.