Polar Decomposition

The polar decomposition theorem of Cauchy3 states that a non-singular matrix equals an orthogonal matrix either pre or post multiplied by a positive definite symmetric matrix. If we apply this theorem to the deformation gradient $ \mathbf{F}$, we get

$\displaystyle \mathbf{F} = \mathbf{R}\mathbf{U} = \mathbf{V}\mathbf{R}$ (3.13.1)

in which $ \mathbf{R}$ is a proper orthogonal matrix and $ \mathbf{U}$ and $ \mathbf{V}$ are positive definite symmetric matrices. Note that the decomposition (3.13.1) of $ \mathbf{F}$ is unique in that $ \mathbf{R}$, $ \mathbf{U}$ and $ \mathbf{V}$ are uniquely determined by $ \mathbf{F}$. From (3.13.1) it follows that

$\displaystyle J = \det \mathbf{F} = \det \mathbf{U} = \det\mathbf{V}.$ (3.13.2)

Since $ \mathbf{C} = \mathbf{F}^T\mathbf{F}$ and $ \mathbf{B} =
\mathbf{F}\mathbf{F}^T$, therefore

  $\displaystyle \mathbf{C} = \mathbf{F}^T\mathbf{F} = (\mathbf{R}\mathbf{U})^T\mathbf{R}\mathbf{U} = \mathbf{U}^2,$ (3.13.3)
  $\displaystyle \mathbf{B} = \mathbf{F}\mathbf{F}^T = \mathbf{V}\mathbf{R}(\mathbf{V}\mathbf{R})^T = \mathbf{V}^2.$ (3.13.4)

We note that

$\displaystyle \mathbf{V} = \mathbf{R}\mathbf{U}\mathbf{R}^T$ (3.13.5)

and

$\displaystyle \mathbf{B} = \mathbf{F}\mathbf{F}^T = \mathbf{R}\mathbf{U}(\mathbf{R}\mathbf{U})^T = \mathbf{R}\mathbf{C}\mathbf{R}^T.$ (3.13.6)

Since $ \mathbf{U}$ is symmetric, it has at least one orthogonal triad of eigenvectors. Let $ \mathbf{N}^{(1)}$ be an eigenvector of $ \mathbf{U}$ and $ \lambda_1$ be the corresponding eigenvalue so that

$\displaystyle \mathbf{U}\mathbf{N}^{(1)} = \lambda_1\mathbf{N}^{(1)}.$ (3.13.7)

Therefore

$\displaystyle \mathbf{C}\mathbf{N}^{(1)} = \mathbf{U}\mathbf{U}\mathbf{N}^{(1)} = \lambda_1\mathbf{U}\mathbf{N}^{(1)} = (\lambda_1)^2\mathbf{N}^{(1)}.$ (3.13.8)

Thus $ \mathbf{N}^{(1)}$ is an eigenvector of $ \mathbf{C}$ and the corresponding eigenvalue is $ (\lambda_1)^2$. Since eqn. (3.13.8) holds for every eigenvector of $ \mathbf{U}$, we conclude that eigenvectors of $ \mathbf{U}$ and $ \mathbf{C}$ are the same and the eigenvalues of $ \mathbf{C}$ are equal to the squares of the eigenvalues of $ \mathbf{U}$. In section 3.9, we proved that the eigenvalues of $ \mathbf{C}$ are the squares of the principal stretches and the eigenvectors of $ \mathbf{C}$ are the axes of principal stretches also usually called principal axes of stretch in the reference configuration. Thus eigenvectors of $ \mathbf{U}$ are the principal axes of stretch in the reference configuration and the eigenvalues of $ \mathbf{U}$ are the princpal stretches. Let us now find the deformed position of an eigenvector $ \mathbf{N}^{(1)}$ of $ \mathbf{U}$. Since

$\displaystyle \mathbf{F}\mathbf{N}^{(1)} = \mathbf{R}\mathbf{U}\mathbf{N}^{(1)} = \lambda_1\mathbf{R}\mathbf{N}^{(1)},$ (3.13.9)

therefore

$\displaystyle \mathbf{n}^{(1)} = \mathbf{R}\mathbf{N}^{(1)}$ (3.13.10)

points in the direction of the vector into which $ \mathbf{N}^{(1)}$ is deformed. Note that

$\displaystyle \mathbf{n}^{(1)}\cdot\mathbf{n}^{(1)} = \mathbf{n}^{(1)T}\mathbf{...
...\mathbf{R}^T\mathbf{R}\mathbf{N}^{(1)} = \mathbf{N}^{(1)T}\mathbf{N}^{(1)} = 1,$ (3.13.11)

therefore, $ \mathbf{n}^{(1)}$ is a unit vector in the direction of the deformed position of $ \mathbf{N}^{(1)}$. Now

$\displaystyle \mathbf{F}\mathbf{N}^{(1)} = \mathbf{V}\mathbf{R}\mathbf{N}^{(1)} = \mathbf{V}\mathbf{n}^{(1)}.$ (3.13.12)

Equations (3.13.9), (3.13.10) and (3.13.12) when combined together give

$\displaystyle \mathbf{V}\mathbf{n}^{(1)} = \lambda_1\mathbf{n}^{(1)}.$ (3.13.13)

Thus $ \lambda_1$ is an eigenvalue of $ \mathbf{V}$ with $ \mathbf{n}^{(1)}$ as the eigenvector. This exercise proves that the eigenvalues of $ \mathbf{U}$ and $ \mathbf{V}$ are equal and that the eigenvectors of $ \mathbf{V}$ are the deformed positions of the eigenvectors of $ \mathbf{U}$. Thus eigenvectors of $ \mathbf{V}$ are the deformed position of the principal axes of stretch. Said differently, eigenvectors of $ \mathbf{V}$ are the principal axes of stretch in the deformed configuration or in the present configuration. Of course,

$\displaystyle \mathbf{B}\mathbf{n}^{(1)} = \mathbf{V}\mathbf{V}\mathbf{n}^{(1)} = (\lambda_1)^2\mathbf{n}^{(1)}\ .$ (3.13.14)

From (3.13.14), (3.13.8), (3.13.9) and (3.13.10), we conclude that eigenvalues of $ \mathbf{B}$ and $ \mathbf{C}$ are equal, and the eigenvectors of $ \mathbf{B}$ are the principal axes of stretch in the deformed configuration.

Corresponding to the two decompositions of $ \mathbf{F}$ given by (3.13.1) we can view the deformation of the triad $ \mathbf{N}^{(1)},\ \mathbf{N}^{(2)},\ \mathbf{N}^{(3)}$, the eigenvectors of $ \mathbf{U}$, as a stretch of these axes followed by a rotation or a rotation of these axes followed by their stretch. This is schematically shown in the Fig. below.

\includegraphics{continuumfig3.7.eps}

Example: For simple shear

$\displaystyle x_i = X_i + kX_1\delta_{2i},$    

a)
find the principal stretches,
b)
show that the angle $ \theta$ through which the principal axes of stretch in the reference configuration are rotated so as to become the principal axes of stretch in the present configuration is given by $ \tan \theta = k/2$.

Solution: For the given deformation

$\displaystyle [\mathbf{F}] =\ $ $\displaystyle \left[\begin{array}{ccc}1 & 0 & 0\\ k & 1 & 0\\ 0 & 0 & 1\end{array}\right]\,$    
$\displaystyle [\mathbf{C}]=\ $ $\displaystyle \left[\begin{array}{ccc}1 + k^2 & k & 0\\ k & 1 & 0\\ 0 & 0 & 1 \end{array}\right]\ ,$    
$\displaystyle [\mathbf{B}] =\ $ $\displaystyle \left[\begin{array}{ccc} 1 & k & 0\\ k & 1+k^2 & 0\\ 0 & 0 & 1\end{array}\right]\ .$    

The squares of the principal stretches $ \lambda_1,\lambda_2,\lambda_3$ are roots of the equation $ \det([\mathbf{C}] -
\lambda[\mathbf{1}])=0$

% latex2html id marker 13704
$\displaystyle \therefore\hspace{.2in}$ $\displaystyle [(1 + k^2 - \lambda)(1 - \lambda) - k^2](1 - \lambda ) = 0.$    
% latex2html id marker 13706
$\displaystyle \therefore\hspace{.2in}$ $\displaystyle (\lambda_1)^2 = 1 + 1/2k^2 + k\sqrt{1 + 1/4 k^2}$    
  $\displaystyle (\lambda_2)^2 = 1 + 1/2k^2 - k\sqrt{1 + 1/4k^2} = 1/(\lambda_1)^2$    
  $\displaystyle \lambda_3 = 1.$    

Note that the given deformation is a plane strain deformation. By looking at the matrices $ [\mathbf{C}]$ and $ [\mathbf{B}]$ we see that $ X_3$-axis and $ x_3$-axis are eigenvectors of $ [\mathbf{C}]$ and $ [\mathbf{B}]$ corresponding to the eigenvalue one. Also, $ x_3$-axis coincides with the $ X_3$-axis for the given deformation. Thus the rotation of principal axes of stretch takes place about the $ X_3$-axis. Let this angle of rotation be $ \theta$ in the clockwise direction. Then

$\displaystyle [\mathbf{R}] = \left[\begin{array}{ccc}\cos\theta & -\sin\theta & 0\\  \sin\theta & \cos\theta & 0\\  0 & 0 & 1\end{array}\right]$    

Substituting for $ [\mathbf{B}]$, $ [\mathbf{C}]$ and $ [\mathbf{R}]$ in eqn. (3.13.6) we arrive at

$\displaystyle \left[\begin{array}{ccc} 1 & k & 0\\  k & 1+k^2 & 0\\  0 & 0 & 1\...
...1 + k^2\sin^2\theta + 2k\sin\theta\cos\theta & 0\\  0 & 0 & 1\end{array}\right]$    

Therefore

$\displaystyle 1 = 1 + k^2\cos^2\theta - 2k\sin\theta\cos\theta$    

which gives $ \tan \theta = k/2$.