... magnitude1
The magnitude of $ F_{iA}$ is defined as $ \sqrt{1/2 F_{iA}F_{iA}}$.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....2
$ \lambda_1,\lambda_2\lambda_3$ should not be confused with the components of a vector.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... Cauchy3
This theorem is proved in any book on linear algebra, e.g. on pg. 83 of P.R. Halmos, Finite Dimensional Vector Spaces, 2nd ed. Van Nostrand, Princeton, Toronto, and London, 1958.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... field.4
This requirement is in addition to the condition that $ J > 0$ for the given strain field.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.