Introduction to Continuum Mechanics





























©Romesh C. Batra, 1998, 2000

CONTENTS

Chapter 1 Introduction

1.
What is Mechanics?1-1
2.
Continuum Mechanics1-2
3.
An example of an ad-hoc approach1-3

Chapter 2 Mathematical Preliminaries

1.
Summation convention, Dummy Indices2-1
2.
Free Indices2-3
3.
Kronecker Delta2-4
4.
Index Notation2-6
5.
Permutation Symbol2-7
6.
Manipulation with the Indicial Notation2-9
7.
Translation and Rotation of Coordinate Axes2-12
8.
Tensors2-19

Chapter 3 Kinematics

1.
Description of Motion of a Continuum 3-1
2.
Referential and Spatial Descriptions3-3
3.
Displacement Vector3-5
4.
Restrictions on Continuous Deformation of a
Deformable Body3-6
5.
Material Derivative3-9
6.
Finding Acceleration of a Particle from a given
Velocity Field3-11
7.
Deformation Gradient3-14
8.
Strain Tensors 3-21
9.
Principal Strains3-24
10.
Deformation of Areas and Volumes3-33
11.
Mass Density. Equation of Continuity3-35
12.
Rate of Deformation3-38
13.
Polar Decomposition3-45
14.
Infinitesimal Deformations 3-50

Chapter 4 The Stress Tensor

1.
Kinetics of a Continuous Media4-1
2.
Boundary Conditions for the Stress Tensor4-10
3.
Nominal Stress Tensor 4-13
4.
Transformation of Stress Tensor under Rotation of Axes4-15
5.
Principal Stresses. Maximum Shear Stress4-20

Chaper 5 The Linear Elastic Material

1.
Introduction5-1
2.
Linear Elastic Solid. Hookean Material5-1
3.
Equations of the Infinitesimal Theory of Elasticity5-7
4.
Principle of Superposition5-10
5.
A Uniqueness Theorem5-1ll
6.
Compatibility Equations Expressed in terms of the Stress
Components for an Isotropic, Homogeneous, Linear, Elastic Solid51-4
7.
Some Examples. 5-18
a)
Vibration of an Infinite Plate
b)
Torsion of a Circular Shaft5-22
c)
Torsion of Non-Circular Cylinders5-26

Chaper 6 The Linear Elastic Material

1.
Constitutive Relation6-1
2.
Formulation of an Initial-Boundary-Varlue Problem6-3
3.
Examples6-4